316 research outputs found

    Efficiency characterization of a large neuronal network: a causal information approach

    Full text link
    When inhibitory neurons constitute about 40% of neurons they could have an important antinociceptive role, as they would easily regulate the level of activity of other neurons. We consider a simple network of cortical spiking neurons with axonal conduction delays and spike timing dependent plasticity, representative of a cortical column or hypercolumn with large proportion of inhibitory neurons. Each neuron fires following a Hodgkin-Huxley like dynamics and it is interconnected randomly to other neurons. The network dynamics is investigated estimating Bandt and Pompe probability distribution function associated to the interspike intervals and taking different degrees of inter-connectivity across neurons. More specifically we take into account the fine temporal ``structures'' of the complex neuronal signals not just by using the probability distributions associated to the inter spike intervals, but instead considering much more subtle measures accounting for their causal information: the Shannon permutation entropy, Fisher permutation information and permutation statistical complexity. This allows us to investigate how the information of the system might saturate to a finite value as the degree of inter-connectivity across neurons grows, inferring the emergent dynamical properties of the system.Comment: 26 pages, 3 Figures; Physica A, in pres

    Sub-nanometer active seismic isolator control

    Get PDF
    Ambitious projects such as the design of the future Compact Linear Collider (CLIC) require challenging parameters and technologies. Stabilization of the CLIC particle beam is one of these challenges. Ground motion (GM) is the main source of beam misalignment. Beam dynamics controls are however efficient only at low frequency (<4Hz), due to the sampling of the beam at 50 Hz. Hence, ground motion mitigation techniques such as active stabilization are required. This paper shows a dedicated prototype able to manage vibration at a sub-nanometer scale. The use of cutting edge sensor technology is however very challenging for control applications as they are usually used for measurement purposes. Limiting factors such as sensor dynamics and noise lead to a performance optimization problem. The current state of the art in GM measurement and GM mitigation techniques is pointed out and shows limits of the technologies. The proposed active device is then described and a realistic model of the process has been established. A dedicated controller design combining feedforward and feedback techniques is presented and theoretical results in terms of Power Spectral Density (PSD) of displacement are compared to real time experimental results obtained with a rapid control prototyping tool

    Active vibration isolation system for CLIC final focus

    Get PDF
    International audienceWith pinpoint accuracy, the next generation of Linear Collider such as CLIC will collide electron and positron beams at a centre of mass energy of 3 TeV with a desired peak luminosity of 2*1034 cm-2s-1. One of the many challenging features of CLIC is its ability to collide beams at the sub-nanometer scale at the Interaction Point (IP). Such a high level of accuracy could only be achieved by integrating Active Vibration Isolation systems (AVI) upstream of the collision to prevent the main source of vibration: Ground Motion (GM). Complementary control systems downstream of the collision (Interaction Point FeedBack (IPFB), Orbit FeedBack (OFB)) allow low frequency vibration rejection. This paper focuses on a dedicated AVI table designed for the last focusing quadrupole (QD0) where the specifications are the most stringent. Combining FeedForward (FF) and FeedBack (FB) techniques, the prototype is able to reduce GM down to 0.6 nm RMS(4Hz) experimentally without any load. These performances couldn't be achieved without cutting edge-technology such as sub-nanometer piezo actuators, ultra-low noise accelerometers and seismometers and an accurate guidance system. The whole AVI system is described in details. Further developments concern the integration of the final focusing magnet above the AVI table, first as part of the simulation with its dynamical model, and finally, as a realistic prototype

    Interaction point feedback design and integrated simulations to stabilize the CLIC final focus

    Get PDF
    International audienceThe Compact Linear Collider (CLIC) accelerator has strong precision requirements on offset position between the beams. The beam which is sensitive to ground motion needs to be stabilized to unprecedented requirements. Different Beam Based Feedback (BBF) algorithms such as Orbit Feedback (OFB) and Beam-Beam Offset Feedback (BBOF) have been designed. This paper focuses on the BBOF control which could be added to the CLIC baseline. It has been tested for different ground motion models in the presence of noises or disturbances and uses digital linear control with or without an adaptive loop. The simulations demonstrate that it is possible to achieve the required performances and quantify the maximum allowed noise level. This amount of admitted noises and disturbances is given in terms of an equivalent disturbance on the position of the magnet that controls the beam offset. Due to the limited sampling frequency of the process, the control loop is in a very small bandwidth. The study shows that these disturbances have to be lowered by other means in the higher frequency range

    Study of the Stabilization to the Nanometer Level of Mechanical Vibrations of the CLIC Main Beam

    Get PDF
    Original publication available at http://www.jacow.org/International audienceTo reach the design luminosity of CLIC, the movements of the quadrupoles should be limited to the nanometre level in order to limit the beam size and emittance growth. Below 1 Hz, the movements of the main beam quadrupoles will be corrected by a beambased feedback. But above 1 Hz, the quadrupoles should be mechanically stabilized. A collaboration effort is ongoing between several institutes to study the feasibility of the "nanostabilization" of the CLIC quadrupoles. The study described in this paper covers the characterization of independent measuring techniques including optical methods to detect nanometre sized displacements and analyze the vibrations. Actuators and feedback algorithms for sub-nanometre movements of magnets with a mass of more than 400 kg are being developed and tested. Input is given to the design of the quadrupole magnets, the supports and alignment system in order to limit the amplification of the vibration sources at resonant frequencies. A full scale mock-up integrating all these features is presently under design. Finally, a series of experiments in accelerator environments should demonstrate the feasibility of the nanometre stabilization

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
    • …
    corecore